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EFFECT OF A SHOCK PULSE ON A FLOATING ICE SHEET

UDC 624.124:532.595V. M. Kozin and A. V. Pogorelova

The vibrations of a viscoelastic plate lying on an elastic liquid base subjected to pulse loading have
been studied theoretically and experimentally. The effect of the variable depth of the reservoir, plate
thickness, and strain relaxation time on the value of the plate vibration amplitude and the length
and curvature of the flexural gravity wave profile are analyzed. Good agreement of theoretical and
experimental results is obtained.
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1. The theoretical part of the present study is devoted to extending the results obtained in [1]. We consider
an initially unstrained, homogeneous, isotropic, viscoelastic ice plate lying on an elastic liquid base. The plate is in
the state of rest and is loaded by a shock pulse Y at the time t = 0. The coordinate system is arranged as follows:
the origin is at the point of application of the pulse, the plane xOy coincides with the unperturbed plate–liquid
interface, and the z axis points upward. The flow of the fluid of density ρ2 is assumed to be potential.

According to [2, 3], ice is described by the law of deformation of an elastically delayed, linear Kelvin–Voigt
medium [4]. In this case, the differential equation of small vibrations of the floating plate is written as follows
(see [1]):
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Here G = 0.5E/(1+ν) is the shear elastic modulus of ice, E is the elastic modulus of ice in tension and compression,
ν is Poisson’s constant, h(x, y) is the ice thickness, ρ1(x, y) is the ice density, τφ is the strain relaxation time for
the ice plate or the “delay time” [2–4], w(x, y, t) is the liquid surface strain or the vertical displacement of ice,
Φ(x, y, z, t) is the liquid velocity potential function, which satisfies the Laplace equation (∆Φ = 0), δ(r) is the Dirac
delta function, r = (x, y) is the radius vector of the current point of the ice surface, and δ(t) is the Dirac delta
function. It is subsequently assumed that ρ1 and h are constants. As calculated values of the shear modulus G

and the density of the plate ρ1, one should take their reduced values determined as integral values over the plate
thickness [2].

The initial conditions for w are homogeneous [1, 2]:

w = 0, ẇ = 0 at t = 0.

The linearized kinematic condition on the ice–water interface has the form [2]
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For the liquid velocity potential function Φ(x, y, z, t), the boundary condition at the bottom of the reservoir
is written as

∂Φ
∂n

= 0 at z = −H, (1.3)
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where n is the normal vector to the bottom surface, H = H1 +αr− b, H1 is the reservoir depth, r is the modulus of
the radius-vector r, b = ρ1h/ρ2 is the ice immersion in static equilibrium, and α is the slope of the bottom surface
along the direction of the radius-vector r. If α = 0, the distance from the ice–water interface to the bottom of the
reservoir is constant and equal to H1 − b. If α > 0, the depth increases in the direction of the radius-vector r, and
if α < 0, it decreases.

By analogy with [1], to solve the problem, we use Fourier transformation over the coordinates x and y for
the functions w(x, y, t) and Φ(x, y, z, t) and pass to their transforms wF (γ, t) and ΦF (γ, z, t) in vector form:
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(ΦF (γ, z, t) = A1 exp (−γz) + B1 exp (γz)).

Here A1 and B1 are unknown functions of the variables γ and t and γ is the modulus of the vector γ.
After applying Fourier transformation to Eq. (1.1) and using the kinematic (1.2) and boundary (1.3) condi-

tions, we obtain the following second-order linear differential equation for wF with constant coefficients:

ẅF m(γ) + ẇF k(γ) + wF c(γ) = Y δ(t), (1.4)

where
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Applying the Laplace transformation to the solution of Eq. (1.4) under homogeneous initial conditions, we
obtain
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By analogy with [2], the sought function w is found using the inverse Fourier transformation:

w(r, t) =
1
2π

∞∫
0

wF γJ0(γr) dγ. (1.6)

The value of wF is calculated by formulas (1.5), J0(γr) is the first-order Bessel function, r is the distance from a point
to the place of application of the shock pulse, t is time, the values of c, m, and k are calculated by formulas (1.4).

2. The experiments were performed in a reservoir with dimensions L×B×H = 2.0×1.5×1.2 m. A polymer
plate 1 mm thick was used as the model plate. An upward shock pulse was applied by means of a mechanical loading
device. The parameters of the modeled waves were measured using a displacement pickup and a two-coordinate
plotter. The pulse intensity was chosen depending on the sensitivity of the pickup to ensure stable and reliable
recording of plate strain curves. A 20–30% increase in the pulse intensity led to a linear increase in the wave
amplitude with an unchanged period.

The measured strains of the plate at distances of 0.26 and 0.52 m are shown by solid curves in Fig. 1a and b,
respectively. This location of the pickup relative to the point of pulse application ensured high-quality recording of
the wave profile within approximately two wave periods without distortion, i.e., without superposition of the waves
reflected from the reservoir walls.

3. The results of calculations by formula (1.6) were compared with the experimental data obtained for the
following parameters of the plate and water: ρ1 = 2200 kg/m3, ρ2 = 1000 kg/m3, E = 4.1 · 106 N/m2, ν = 0.45,
h = 0.001 m, α = 0, H = 1.2 m, τφ = 5 sec, and Y = 4 kg/sec. The relaxation time of the polymer plate τφ

was chosen so that the periods of the flexural gravity wave in the experiment and calculations were approximately
identical. We note that the best agreement of theoretical and experimental data was observed for τφ = 5 sec. Since
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under the conditions of the experiment, it was not possible to measure the value of the pulse applied to the plate,
in calculations by formula (1.6), we used the value of the pulse for which the theoretical and experimental vibration
frequencies of the plate are approximately equal. Figure 1 shows the results of calculations by formula (1.6) (dashed
curves) and experimental data (solid curves) for distances of 0.26 and 0.52 m from the pulse source. It obvious
that solution (1.6) for the viscoelastic model of the plate is correct and agree well with the experimental data for
t 6 1.5 sec, i.e., for the time interval in which the effect of reflected waves is ignored in measurement results.

4. In the calculations using formula (1.6), the distances to the point of pulse application, the time elapsed
from the moment of pulse application, the reservoir depth, the ice plate thickness, and the relaxation time were
varied and the ice and water parameters were as follows: ρ1 = 900 kg/m3, ρ2 = 1000 kg/m3, E = 5 · 109 N/m2,
ν = 1/3, and Y = −107 kg/sec. The ice thickness h was varied from 0.1 to 2.0 m, the relaxation time τφ from 0.001
to 10 sec, the distance from the ice–water interface to the bottom H from 1 m to infinity, and the slope of the
bottom surface α from −1 to 1.

Figure 2 shows curves of w(t) at the point of pulse application r = 0 for H = 100 m, α = 0, and various values
of the relaxation time τφ and ice thickness h. Curves 1–3 correspond to τφ = 0.05, 0.69, and 5 sec for h = 0.5 m. It
is evident that an increase in the relaxation time leads to a decrease in the amplitude and an increase in the plate
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vibration period. In [5, 6], it is shown that the viscoelastic model of ice gives the best fit to the experimental data
for a relaxation time τφ = (0.690 ± 0.067) sec. Curves 2, 4, and 5 correspond to plate thicknesses h = 0.5, 1, and
2 m at τφ = 0.69 sec. As one might expect, an increase in the plate thickness results in a decrease in the plate
deflection amplitude and an increase in the wavelength and period.

Figure 3 shows the effect of the slope of the bottom surface α on the vertical displacement of the plate w

for various H versus time t at the point of pulse application r = 0 for τφ = 0.69 sec and h = 0.5 m. Curves 1–3
refer to H1 − b = 30, 10, and 3 m for α = 0 and curves 4–6 refer to the same values of H1 − b for α = ±1. From
Fig. 3 it is evident that the slope of the bottom surface leads in an increase in the plate deflection amplitude. The
smaller the reservoir depth, the stronger the effect of α on the deflection of the ice plate.

Figure 4 shows the effect of the reservoir depth and the slope of the bottom surface on the value of w and the
modulus of the bending curvature of the ice surface |K| versus the distance r from the point of pulse application at
the time t = 0.7 sec for τφ = 0.69 sec and h = 0.5 m. Curves 1 and 2 are plots of the dependence w(r) for H = 2 and
12 m, respectively (α = 0). Curves 5 and 6 show the dependences of the curvature modulus on radius for curves 1
and 2, respectively. It is evident that an increase in the reservoir depth results in an increase in the deflection of
the ice plate in the neighborhood of the loading point and to an insignificant increase in the bending curvature of
the plate. Curves 3 and 4 are plots of the dependence w(r) for H1 − b = 2 m and α = 1 and H1 − b = 12 m and
α = −1, respectively, curves 7 and 8 are plots of the curvature modulus versus radius for curves 3 and 4. From the
results presented in Fig. 4 (curves 3, 4, 7, and 8), it follows that an inclined bottom and a shallow depth can result
in a factor of 5–10 increase in the bending curvature of the ice surface. We note that curves 3 and 4 in Fig. 4 refer
to large values of the slope angle (α ≈ 1) in the case where the distance from deep to shallow water is much smaller
than the length of the flexural gravity wave.

Figure 5 shows the effect of a small slope angle of the bottom surface (α � 1) and time t on the vertical
displacement of the ice plate w for h = 0.5 m, τφ = 0.69 sec, and H1 − b = 11 m. Curves 1–4 refer to t = 2,
5, 10, and 15 sec for a constant depth (α = 0). An analysis of these curves shows that the largest deflection of
the ice plate is attained at initial times in the neighborhood of the point of pulse application. Curves 5–8 show
development of a flexural gravity wave under conditions of a small elevation of the bottom surface (α = −0.109) at
the times t = 2, 5, 10, and 15 sec, respectively. It can be seen that as the wave reaches a shallow depth of 0.1 m,
which corresponds to r = 100 m for α = −0.109, the flexural gravity wave is “compressed,” i.e., its length decreases.
From the calculations, it follows that in the neighborhood of r = 100 m, the curvature increases by a factor of
several hundred with time.

The results of this study can be used to estimate the ice-breaking capacity of flexural-gravity waves produced
by shock pulses.
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